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Abstract—We address the problem of object class segmen-
tation of 3D point clouds. Each point of a cloud should be
assigned a class label determined by the category of the
object it belongs to. Non-associative Markov networks have
been applied to this task recently. Indeed, they impose more
flexible constraints on segmentation results in contrast to the
associative ones. We show how to train non-associative Markov
networks in a principled manner using the structured Support
Vector Machine (SVM) formalism. In contrast to prior work
we use the kernel trick which makes our method one of the
first non-linear methods for max-margin Markov Random
Field training applied to 3D point cloud segmentation. We
evaluate our method on airborne and terrestrial laser scans.
In comparison to the other non-linear training techniques our
method shows higher accuracy.

Keywords-semantic segmentation; LIDAR; conditional ran-
dom field; structured learning; cutting-plane training

I. INTRODUCTION

Light Detection and Ranging (LIDAR) technology has be-
come commonly available recently. Airborne and terrestrial
laser scanners produce a lot of data which need to be ana-
lyzed. Object class segmentation is an important step in the
process of point cloud understanding. Each point of a scan
should be assigned a class label determined by the category
of the object it belongs to. For example, it is possible to split
terrestrial scans into buildings, trees, cars, ground regions,
etc. (Fig. 1). Machine learning methods are often used for
these purposes: a classifier is built based on the features of a
train scan. Afterwards, different point clouds are labeled by
applying this classifier. Points can be treated independently
(e.g. [1]), but since individual points are classified without
context, their features should be computed within a large
spatial support, which is computationally intensive and often
does not afford the desired accuracy.

The Markov Random Field (MRF) framework provides a
natural way of incorporating local context. In their seminal
work Anguelov et al. propose to use associative Markov
networks (AMN) for segmentation [2]. Associative Markov
networks encourage neighboring points to have same class
labels. The method only performs smoothing in an intelligent
manner, but it improves the results significantly because
individual classification is usually not robust. They minimize
an energy function defined over the graph representing some

Figure 1. Typical terrestrial LIDAR scan. Hand-crafted labeling is color-
coded: red — ground, black — vehicle, green — vegetation, white — pole.

neighborhood system on the points of a scan. The energy is
a sum of potential functions of the features corresponding to
individual nodes or edges extracted from the scan. Since the
form of the energy function is simple enough, a graphcut-
based method is used for minimization. The parameters of
the energy are learned by reducing the training problem to
quadratic programming (QP).

In practice, complicated edge features are not very sig-
nificant when the associative model is used. The model is
not flexible enough to make use of edge features because
they can only impose the intention to belong to the same
class for neighboring points. As a result, in the early papers
the constant pairwise feature is used [2], [3], i.e. pairwise
potential serve only as a prior for class co-occurrence.
However, Munoz et al. [4] use an anisotropic model, where
pairwise potentials depend on the edge features, like in
Conditional Random Fields (CRF). They also propose to
use higher-order cliques within the CRF and show how to
train the new model [5], but do not abandon the associativity
constraint. In their model clique potentials (both pairwise
and higher-order) are allowed to be positive only if all the
variables in the clique share a common label, otherwise
they are equal to zero. Associativity is indeed a hard
constraint. In our prior work we have shown that it makes
impossible to express asymmetric dependencies like “trees
and buildings are usually above the ground” [6]. We use
the general form of pairwise potentials. Our method is more
exacting to a train set: interclass interactions should be well
represented in addition to the intraclass ones learned by
AMNs. Naı̈ve Bayes is used to learn the parameters. The
drawback of that approach is ignoring correlations between



neighboring points during learning. Posner et al. also use
a non-associative Markov network, which is a particular
case of ours: they do not model the dependency of edge
potential on the scan, which corresponds to using only prior
distributions in our model [7]. Such simple Markov network
does not need to be trained, only class frequencies should
be estimated.

The problem of training non-associative Markov networks
has not been deeply investigated. The essential difference is
this form of energy is irregular, and there are no exact meth-
ods for minimizing it (c.f. Section II). While the accuracy
of inexact methods is usually sufficient for inference, it may
cause troubles during training. Finley and Joachims address
the problem of structured learning when no exact inference
algorithm is available [8]. Franc and Savchinskyy show
how to train different categories of max-sum classifiers,
including non-associative ones [9]. However, both papers
are mostly theoretical, and the MRF formulations they use
for experiments are simple.

We define more complicated pairwise potentials that
handle the segmentation problem well and show how to
train this non-associative Markov network in a principled
manner using the structured Support Vector Machine (SVM)
formalism [10], which is the main contribution of this paper.
Since real scans are usually class-imbalanced, learning from
imbalanced scans is an important practical issue. We show
how to account the imbalance by changing the loss function.
We also modify the original feature space with the radial
basis function kernels, which is helpful when the assignment
depends on features nonlinearly. In this sense our method is
close to the work by Triebel et al. [3], who combine an
AMN with a k nearest neighbor classifier. The difference is
our support vectors are not only the correct training scans’
labellings, but potentially all possible assignments over them
(wrongly labeled scans contribute with negative weights).
Since our method is sparse, only few wrongly labeled scans
are usually chosen as support vectors.

CRFs are not the only way to account for spatial struc-
ture. Object candidate segmentation followed by segment
classification is sometimes used [11], [12]. Recently, Xiong
et al. proposed Stacked 3D Parsing for incorporating context
into segmentation [13]. They learn relational information in
coarse and fine scales and then combine that information.

We review the formulation of CRF used for object class
segmentation in the following section. Section III describes
the structured learning problem and techniques, including
the cutting-plane training we adopted. Section IV reports
on experimental results followed by a discussion and future
work suggestions.

II. CRF FOR POINT CLOUD SEGMENTATION

The assumption that labels of neighboring points are cor-
related is extensively exploited for point cloud segmentation.
Moreover, recent work takes into account the dependency

of this interaction on the data. For example, if a point lies
one meter above another, they are more likely to belong
to the class “pole” altogether than if the second point is
one meter to the right. This is usually modeled as a variant
of Conditional Random Field. We follow this trend and
model the posterior probability of the classification result
y = {y1, . . . , yN} given the scan features x as

P(y|x) =
1

Z(x)
exp Φ(x,y) (1)

=
1

Z(x)

N∏
i=1

expφn(xi, yi)
∏

(i,j)∈E

expφe(xij , yi, yj),

where the partition function Z(x) =
∑

ȳ exp Φ(x, ȳ) is a
sum over all possible label assignments ȳ that is independent
of the assignment y itself. Each yi is a random variable that
corresponds to one of N points of the scan and takes a value
in the range {1, . . . ,K}, which means one of the K pre-
defined class labels. E is a neighboring system over points.
Usually the edges connecting each point to its k nearest
neighbors are added to this set.

We consider the linear form of the potential functions:
Φ(x,y) = wTΨ(x,y), where the vector-valued function
Ψ defines the correspondence of the weights w to relevant
features and classes. Node and edge potential functions
are thus defined as φn(xi, yi) =

∑K
k=1 w

T
n,kxiy

k
i and

φe(xij , yi, yj) =
∑K
k=1

∑K
l=1 w

T
e,klxijy

k
i y
l
j , where yki is

a binary indicator variable that is turned on if and only
if the i-th node is labeled as belonging to the class k:
yki ≡ [yi = k]. The weight vector is thus a concatenation of
the weights for all the possible node and edge classes: w =
[wn,1,wn,2, . . . ,wn,K ,we,11,we,12, . . . ,we,KK ]. Note that
we redefine the inner product via kernels to go beyond this
linear model, see Section III-C for details.

One does not need to know the distribution P(y|x) to
find its mode, i.e. the most probable assignment y. For some
particular cases, a good approximation (or even the global
maximum) for

arg max
ȳ

log P(ȳ|x) (2)

could be found efficiently using message passing [14], linear
programming relaxation [15], or graph cuts [16]. Since
the structure of the CRF we use contains cycles, and the
potential functions are not regular (non-associativity), loopy
belief propagation [14] is not guaranteed to converge at
all, and graph cut based methods are not applicable. We
use sequential tree-reweighted message passing (TRW-S)
for inference [17]1. It minimizes the objective of the dual
problem for the relaxation of (2), which upper bounds the
maximum of (2). In practice, the relaxation is usually tight,
so minimizing the upper bound leads to a solution having
the probability close to optimal.

1We used the implementation by Vladimir Kolmogorov: http://www.cs.
ucl.ac.uk/staff/V.Kolmogorov/papers/TRW-S.html

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/papers/TRW-S.html
http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/papers/TRW-S.html


III. STRUCTURAL SVM AND CUTTING-PLANE TRAINING

A. Max-margin formulation

There is a number of ways to tune the model’s weightsw.
One of them is independent learning, i.e. to collect the
statistics on the features for each class label (for a node)
and each pair of class labels (for an edge) and train a
linear classifier, which is shared among the factors. This
approach does not take into account correlations between
factors, which is often helpful for learning graphical model’s
parameters. It is natural to maximize the likelihood of
weights given a training set of labeled scans. Suppose we
have only one training scan (x,y) (the extension to multiple
scans is straightforward). For pairwise CRFs, one needs to
maximize

Pw(y|x) =
expwTΨ(x,y)∑
ȳ expwTΨ(x, ȳ)

, (3)

where the sum in the denominator is over all the possible as-
signments. In spite of the function is concave onw, gradient-
based methods are not suitable here due to intractable
computation of the partition function on each iterationunless
the graph is tree-structured (e.g. [18]) or some heuristic is
used to approximate the likelihood (e.g. [19]).

Hinge loss is usually minimized instead. It corresponds
to the margin maximization scheme with slack variables ξ:

min
w,ξ≥0

1

2
wTw + Cξ (4)

s.t. wTΨ(x,y) + ξ ≥ wTΨ(x, ȳ) + ∆(y, ȳ),∀ȳ.

Here wTw is a regularization term that penalizes vectors
w of big norm, C trades off the importance of this penalty
and the loss. ∆(y, ȳ) measures the difference between two
assignments, typically it is a Hamming distance: ∆(y, ȳ) =∑N
i=1[yi 6= ȳi]. This optimization problem is known as

a structural Support Vector Machine (SVM) [10]2. It is
actually a standard quadratic optimization problem. Unfor-
tunately, it contains exponentially many constraints (KN for
N variables in CRF and K class labels), so conventional QP
techniques are not applicable. Therefore, all the structured
learning methods exploit the structure of the problem. The
common thing is they substitute the exponential number of
linear constraints with a non-linear one:

wTΨ(x,y) + ξ ≥ max
ȳ

[wTΨ(x, ȳ) + ∆(y, ȳ)]. (5)

Thus, the outer continuous optimization problem contains
the inner integer one. Note that if the loss function could
be factored into the sum over nodes and edges, the inner
problem could be solved via combinatorial optimization. If
the required regularity constraints are hold, the same CRF
inference algorithm can be applied.

2The special case of this problem when parameters of an MRF are tuned
is also referred to as max-margin Markov network (M3N) learning [20].

If point classes are represented in a training scan un-
evenly, the weights for underrepresented classes tend to
be small since erroneous assignments in that nodes do not
have significant impact to the loss. It is natural to set the
penalty for misclassification in inverse proportion to the
frequency of each class. Specifically, we use the weighted
Hamming loss: ∆(y, ȳ) =

∑N
i=1[yi 6= ȳi]/freq(yi), where

freq(k) =
∑N
i=1[yi = k] for some class label k. Scale of

the frequency vector does not really matter since its change
is equivalent to changing the constant C in (4), which is
usually tuned on a validation set anyway. Our experiments
show that such simple imbalance accounting scheme works
well if the imbalance is not crucial (when it is still possible
to collect enough statistics).

B. Optimization methods

Taskar et al. suggest to relax the inner problem to linear
programming and then take the dual [20]. The resulting
problem is thus reformulated as a quadratic programming
problem over the weights and dual variables of the inner
one and can be solved with a standard QP solver, which
is tractable for medium-sized problems. This approach has
been applied to point cloud segmentation successfully [2],
[3].

Instead of taking dual of the relaxed inner problem it is
possible to apply a gradient optimization technique to the
problem (4) with the non-linear constraint (5). Subgradi-
ent formulation is both efficient and have intuitive appeal
since it runs the inference algorithm being trained in the
loop [21]. Whenever the slack variable ξ is non-negative
(which corresponds to the linearly inseparable case, usual
in practice), the constraint can be moved to the objective to
get an unconstrained problem. One needs to minimize the
regularized loss function:

c(w) =
1

2C
wTw+

max
ȳ

[wTΨ(x, ȳ) + ∆(y, ȳ)]−wTΨ(x,y). (6)

The weights vector is updated iteratively according to some
subgradient of the loss gw ∈ ∂c(w). It can be computed
as 1

2Cw + Ψ(x, ȳ)−Ψ(x,y), where ȳ is the optimal con-
figuration w.r.t. the current weights. The method is adopted
by Munoz et al. [4]. In the follow-up work they train CRF
with potential functions of non-linear form [5]. Instead of
computing a subgradient, they fit a function ht() having the
form of regression tree to get the required update of the
potentials. The resulting potential function is thus a weighted
sum of such functions over the gradient descent steps t.
Since the learning procedure reminds boosting, the algorithm
is referred to as the functional gradient boosting learning.

Cutting-plane training is another iterative method for
finding maximum margin [10]. The optimization problem (4)
has exponentially many constraints, but not all of them
contribute to the feasible polytope. The idea is to iteratively



Algorithm 1 Cutting-plane algorithm for training structural
SVM

1: Input: labelled instance (x,y), parameters C, ε.
2: W ← ∅, ξ ← 0
3: repeat
4: ȳ← arg maxȳ[wTΨ(x, ȳ) + ∆(y, ȳ)]
5: if ∆(y, ȳ)−wT[Ψ(x,y)−Ψ(x, ȳ)] ≥ ξ + ε then
6: W ←W ∪ {ȳ}
7: (w, ξ)← arg minw,ξ≥0

1
2w

Tw + Cξ
8: s.t. wTΨ(x,y) + ξ ≥
9: wTΨ(x, ȳ) + ∆(y, ȳ),∀ȳ ∈ W

10: end if
11: until W has not changed

add constraints to the polytope and update the weights.
On each iteration the most violated constraint w.r.t. the
current weights is added to a working set W . The left
hand sides of the constraints in (4) do not depend on
the constraint, so the maximum violation is reached for
ȳ = arg maxȳ[wTΨ(x, ȳ) + ∆(y, ȳ)]. This problem is
called loss augmented inference and could be solved via
the same inference algorithm that is used without the loss
(assuming the loss is factored, i.e. decomposable to the sum
over node and edge assignments). The algorithm terminates
when the maximum violation does not exceed some preci-
sion parameter ε. For any fixed ε, the algorithm is proven
to converge for a polynomial number of steps even if the
inference is inexact [8]. See Algorithm 1 for pseudocode.

Cutting-plane CRF training has been applied to computer
vision problems. Szummer et al. train CRFs for two-class
image segmentation and one-image geometry recognition
[22]. However, their energy have associative constraints, and
nearly optimal inference can be performed with graph cuts
or α-expansion. Franc and Savchinskyy describe different
methods for training various max-sum classifiers, including
non-associative ones [9]. Their experiments show that non-
associative CRFs perform slightly worse in semantic image
segmentation. It is explained by inexact inference procedure,
which leads to finding non-optimal weights. They use only
the constant pairwise feature, so non-associativity cannot
help a lot, especially given they use a small training set,
where the complicated pairwise interactions are underrepre-
sented, and the classifier is thus overfit.

C. Dual QP and kernels

In practice the number of iterations until convergence is
small, it seldom exceeds few hundred. On each step we have
a quadratic program to solve (lines 7–9) with a reasonable
number of constraints. It is possible to formulate the dual

problem:

max
α≥0

∑
ȳ

αȳ∆(y, ȳ)− 1

2

∑
ȳ

∑
ȳ′

αȳαȳ′H(ȳ, ȳ′)

s.t.
∑
ȳ

αȳ = C, (7)

where α is a vector of dual variables, and the inner product
is defined as

H(ȳ, ȳ′) = Ψ(x,y)TΨ(x,y)−Ψ(x,y)TΨ(x, ȳ′) (8)

−Ψ(x, ȳ)TΨ(x,y) + Ψ(x, ȳ)TΨ(x, ȳ′)

= K(x,y,x,y)−K(x,y,x, ȳ′) (9)
−K(x, ȳ,x,y) +K(x, ȳ,x, ȳ′).

Since feature vectors contribute to the problem (7) only
via inner product, it is possible to generalize it using ker-
nels (9) similar to the way it is done for classification SVM
[10]. Instead of solving the primal problem on each iteration,
it is also possible to solve the dual one. The solution is thus
formulated in terms of support vectors. For each constraint ȳ
that does not belong to the working set (and for some that
belong), the corresponding αȳ = 0, so the method is sparse,
and the number of support vectors is upper bounded by the
number of iterations. Constraints in the working set are the
most unlikely assignments, so intuitively the best assignment
should be far from the support vectors.

Once kernel SVM is trained on a scan (x,y), one can
find the most probable labeling (2) for a scan x′ as

arg max
y′

∑
ȳ

αȳ[K(x′,y′,x,y)−K(x′,y′,x, ȳ)]. (10)

Just like in the linear case, the same maximization
problem (augmented with the loss ∆(y,y′)) serves as an
oracle in Algorithm 1, line 4. In order to use combinatorial
optimization, a kernel should be decomposable to factors.
We use the radial basis function (RBF) kernel:

K(x,y,x′,y′) =

K∑
k=1

N∑
i=1

N∑
i′=1

exp(−γ‖xi − x′i′‖2)yki y
k
i′+

K∑
k=1

K∑
l=1

∑
(i,j)

∑
(i′,j′)

exp(−γ‖xij − x′i′j′‖2)yki y
l
jy
k
i′y

l
j′ ,

(11)

where (i, j) ∈ E and (i′, j′) ∈ E ′ are the edges of the scans
x and x′ respectively, and γ is a parameter we set equal
to 1.0.

Similar to the dot product in a Euclidean vector space, the
kernel of similar elements in the transformed feature space
is greater than for the distant ones. Intuitively, the maximum
in (10) is reached for the assignment that is close to the way
the training scan is labeled but far from the one for support
vectors.



IV. EXPERIMENTS

We evaluate our algorithm on airborne and terrestrial laser
scans. Our experiments are aimed to show the advantage of
non-associativity rather than to compete with state-of-the-
art. We use the pointwise random forest classification of
point features as the baseline and also show that cutting-
plane approach with kernels3 outperforms other non-linear
methods for training max-margin Markov networks: func-
tional gradient boosting for AMN learning [5]4 and naı̈ve
Bayes [6]. We run two series of experiments on the Aerial
data set. For the first one we use constant unary potentials so
that they do not affect the energy function. It is done to show
the unique ability of our method to catch the information
supplied by edge features. For the second series the unary
potentials are assigned as logarithms of probabilistic ran-
dom forest outputs, while pairwise are tuned via structured
learning, which corresponds to the real-world usage of the
algorithm. We also compare our method to the one with
Hamming loss (without accounting imbalance) and to the
linear structural SVM. We also apply our algorithm to more
challenging Road data set and analyze its limitations.

A. Implementation details

We use the same features as in our prior work [6]. To train
the random forest classifier we extract features of individual
nodes using points in a vicinity of the point. We use a fixed-
radius support region to compute the following features:
• spectral and directional features [4];
• variants of spin images;
• distribution of heights and related features [6].

For two neighboring points of the scan p and q with the
approximated normals np and nq the corresponding pairwise
potentials’ features are:
• cosine of the angle between approximated normals in

the points: nT
p nq/(‖np‖‖nq‖);

• difference in altitudes of the points p and q normalized
by the distance between them: (pz − qz)/‖p− q‖.

We also use over-segmentation, which both speeds up
the algorithm and makes edge features more informative.
We use a variant of R-Tree for spatial indexing and for
segmentation.5 Points within each R-Tree leaf are combined
to segments (the groups of about 50 neighboring points), for
each segment the medoid is approximated as the scan point
closest to the mean. For further processing an (approximate)
medoid represents the whole group, i.e. the neighborhood
graph is build over medoids, features are computed for
medoids and links between them. Later the label assigned to

3We use the implementation of cutting-plane optimization from the
SVMstruct library: http://svmlight.joachims.org/.

4We use the implementation of inference and learning provided by
the authors: http://www.cs.cmu.edu/∼dmunoz/projects/m3n.html. We do not
use higher-order cliques in this setting to compare only pairwise models.

5We use GML LidarK library: http://graphics.cs.msu.ru/en/science/
research/3dpoint/lidark

a medoid is spread to the other points of the segment. Note
that all the scan points participate in the support needed
to compute features of individual medoids. It turns out
that such over-segmentation is critical for non-associative
Markov networks, which is discussed in Section V.

Since the original variant of functional gradient boosting
does not handle imbalanced training data properly, we im-
plemented a similar loss accounting scheme as described in
the end of Section III-A. We run unexponentiated variant of
the algorithm during T = 100 iterations with the decreasing
step size αt = 1/

√
t. Following the authors, we estimate

the regularization parameter on a validation set. We use the
original naı̈ve Bayes parameters as well: each distribution is
approximated by a 10 bin histogram. The parameters of the
structural SVM (C, ε) in our method were also estimated on
the validation set.

B. Data sets

Aerial. We learn parameters of the algorithm on the
airborne and test it on a similar one (Fig. 2a). The scans have
been hand-labeled using three class labels: “ground”, “build-
ing”, “tree”. Buildings are underrepresented (about 1/12,
depending on the scan), the rest of the scan belongs to the
ground and vegetation in approximately equal proportion.
Each scan consists of about 100,000 points.

Road. Our terrestrial data contain 400,000 points scan for
training and about 1 million for test (Fig. 1). Four classes
are used: “ground”, “vehicle”, “tree”, and “pole” (the latest
includes both lamp and sign posts). There are only 0.2% of
pole points, 5% of vehicles, 12% of vegetation, the rest is
ground.

C. Results

The results of our first experiment are summarized in
Table I. Since our data set is class-imbalanced, we report
on precision and recall for each class individually rather
than compute overall accuracy. We use the geometric mean
of recalls (G-mean) as an overall performance measure,
which treats all the classes equally [23]. Unsurprisingly,
usage of meaningful unary potentials helps to achieve better
performance, the improvement is more significant in the case
of associative Markov networks trained with functional gra-
dient boosting. This lag could be explained by the weakness
of the associative pairwise potentials. Meanwhile, adding
unary potentials does not make all the work. The results
show that non-associative CRF yields better performance for
both experiment settings. A visual example of the output is
in Figure 2.

Our method is sparse: only 10 support vectors have been
determined (although, each possible assignment could have
become one). However, the kernel (11) contains the sum over
all factors, so even handling single support vector is quite
slow in comparison to the linear kernel, which is reduced to
the set of weights. Unfortunately, the linear model behaves

http://svmlight.joachims.org/
http://www.cs.cmu.edu/~dmunoz/projects/m3n.html
http://graphics.cs.msu.ru/en/science/research/3dpoint/lidark
http://graphics.cs.msu.ru/en/science/research/3dpoint/lidark


Table I
PRECISIONS AND RECALLS FOR EACH OF THREE CLASSES AND THE

G-MEAN RECALL FOR THE Aerial DATA SET. THE RESULTS OF RANDOM
FOREST (UNARY), NAÏVE BAYES (BAYES), FUNCTIONAL GRADIENT

BOOSTING (FUNC), AND OUR METHOD (SVM). -PW POSTFIX IS
ADDED WHERE NO UNARY POTENTIALS WERE USED. THE RESULTS FOR

DEGENERATIVE MODELS ARE IN THE LAST TWO ROWS: LINEAR
STRUCTURAL SVM WITHOUT RBF KERNELS (SVM-LIN) AND

KERNELIZED SVM WITH HAMMING LOSS (SVM-HAM).

Method ground building tree G-m
pr rec pr rec pr rec rec

UNARY 0.992 0.952 0.576 0.688 0.890 0.892 0.836
BAYES-PW 0.985 0.979 0.493 0.698 0.898 0.809 0.821
FUNC-PW 0.911 0.975 0.578 0.545 0.923 0.850 0.767
SVM-PW 0.981 0.977 0.602 0.803 0.924 0.849 0.874
BAYES 0.983 0.978 0.496 0.779 0.917 0.789 0.844
FUNC 0.975 0.981 0.758 0.645 0.913 0.940 0.841
SVM 0.975 0.979 0.574 0.923 0.960 0.805 0.900

SVM-LIN 0.994 0.987 0.641 0.693 0.907 0.896 0.850
SVM-HAM 0.952 0.985 0.612 0.181 0.813 0.922 0.548

Table II
F-SCORES FOR THE RESULTS RETURNED BY SUBGRADIENT

OPTIMIZATION (SUB, [4]) FUNCTIONAL GRADIENT BOOSTING
(FUNC), AND OUR METHODS (SVM-LIN, SVM) ON THE Road DATA.

Method ground vehicle tree pole
SUB 0.974 0.302 0.497 0.138

FUNC 0.979 0.821 0.934 0.397
SVM-LIN 0.934 0.792 0.789 0.203

SVM 0.980 0.868 0.928 0.000

only slightly better than individual classification, when such
features are used. For example, the neighboring ground
regions have similar normals, and the cosine of the angle
between them is close to zero, while big absolute values
are unlikely for the “ground-ground” edges. Therefore, the
linear model is unsuitable. The bottom row of Table I shows
that usage of the weighted Hamming loss is crucial, in fact
very few buildings are found with the vanilla Hamming loss.

We summarize results of the best performing methods on
terrestrial data (kernel SVM and FGB, along with their linear
counterparts) in Table II. Kernel structured SVM performs
similarly to the functional gradient boosting on ground and
tree classes and slightly better on vehicles. However, it fails
to find poles, which are under-represented in the train set.
The learned model has only 8 support vectors, which were
enough to reach the requested precision ε = 104. Decreasing
ε might help to build a more flexible model, but it makes
training intractable. So, our method performs poorly when a
number of classes is big and/or some classes are extremely
under-represented.

V. DISCUSSION

The experiment on Aerial data shows that non-associative
Markov networks perform better than associative ones, es-
pecially when no meaningful unary potentials are available.
Even simple naı̈ve Bayes learning of pairwise potentials
yields better results than powerful functional gradient boost-
ing fettered with associativity. Motivation for using an

associative model is usually small size of a training set
hence the lack of statistics of the edges. We used a relatively
small training scan (100,000 points), still collecting enough
statistics. Our model turns out to be useful when the number
of classes is low, and there are no very under-represented
classes.

In our work edges connect quite distant points due to
over-segmentation. Intuitively, heterogeneous edges occur
more often because of that. Moreover, the features of such
edges are more meaningful. For two neighboring points of a
densely-scanned point cloud the features like the orientation
and length of the segment that connects the points are
useless. For instance, Anguelov et al. do not use any form of
subsampling. They report that the constant pairwise feature
performs better than meaningful ones, although they use
meager associative Markov networks [2].

We use the TRW-S algorithm for inference as well as for
separation oracle [17]. In spite of the oracle algorithm is
approximate, the results are good in practice. Approximate
inference makes our training algorithm undergenerative,
which means on each step it finds the most violated con-
straint among the reduced set, and the constraint is thus
feasible, but not necessarily is the most violated one [8]. The
overgenerative alternative is to enhance the feasible region
to make it possible to find the exact maximum efficiently.
It could be done via a linear programming relaxation. If
an LP relaxed solution is integral, it is also the optimum
of the original problem, otherwise some variables could
be assigned with fractional values. If constraints based on
fractional assignments are allowed in the cutting-plane pro-
cedure, the theoretical properties are preserved [8]. However,
if the approximation is tight in undergenerative approach
(it is in our experiments), the resulting solution of (4) is
guaranteed to be not far from optimal. Moreover, the residual
can be estimated given only the precision for the last-chosen
violated constraint. It can be upper bounded by the duality
gap in TRW-S, which is often null on the latest iterations
in our experiments. Thus, approximate inference is not a
problem of method’s accuracy, although it can slow it down.

VI. FUTURE WORK

There is number of ways to improve our method. First,
it is possible to add new scan features. For example, a
lot of scans contain color information nowadays, so joint
color and shape descriptors are going to improve the perfor-
mance. Second, there is a trend to use higher-order cliques
for segmentation [5]. It is alluring to use non-associative
potentials of higher-order cliques, but is unclear how to
optimize energy of that kind. Finally, training can be sped
up by exploiting the structure of the prediction task. For
example, the DLPW method (dual loss, primal weights)
proposed recently by Meshi et al. seems to be able to help
with efficiency since it does not require solving the whole
maximization problem on each iteration [24].



(a) GTRUTH (b) UNARY

(c) BAYES-PW (d) BAYES

(e) FUNC-PW (f) FUNC

(g) SVM-PW (h) SVM

Figure 2. Results on a part of the test scan where our method performs well. Red color denotes ground, black — building, green — vegetation. (a)
Ground truth labeling. (b) Random Forest, or just unary potentials. (c)–(d) Naı̈ve Bayes, without and with pairwise potentials. (e)–(f) Functional gradient
boosting. (g)–(h) Cutting-plane training. Better viewed in colour and magnified. The whole scan along with the results could be found in the supplementary
material.
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